6 research outputs found

    Assessment of Post-Treatment Imaging Changes Following Radiotherapy using Magnetic Susceptibility Techniques

    Get PDF
    Radiation therapy (RT) is a common treatment for brain neoplasms and is used alone or in combination with other therapies. The use of RT has been found to be successful in controlling tumors and extending the overall survival of patients; however, there are many unanswered questions regarding radiotherapy effects in the normal brain surrounding or infiltrated by tumor. Changes to the vascular and parenchyma have been documented, and more recently inflammatory mechanisms have been postulated to play a role in radiation injury. Traditional imaging techniques used within the clinic (CT and MRI) are often lacking in their ability to differentiate between recurrent tumor, transient treatment effects, or radiation necrosis. The primary goal of this thesis is to demonstrate an MRI acquisition method that has been shown to be sensitive to deoxygenated blood and iron content as a potential biomarker of radiation effect on the normal brain. Specifically, post-processing techniques are used to determine the applicability of qualitative images such as Susceptibility-Weighted Imaging (SWI) and quantitative methods such as Quantitative Susceptibility Mapping (QSM) and apparent traverse relaxation (R2*) using the same sequence. These methods are potential surrogate markers for vascular changes and neuroinflammatory components that could predict sub-acute and long-term radiation effects. Within this thesis, R2* is shown to be a promising marker for the prediction of radiation necrosis, whereas SWI and QSM are shown to be excellent modalities for detecting longterm effects such as microbleeds. Additionally, R2 * is shown to be a potentially useful technique in identifying post-imaging treatment changes (pseudoprogression) following chemoradiotherapy for malignant glioma. Finally, the use of this non-contrast method shows promise for integration within a clinical setting and the potential for expansion to multicenter clinical trials

    Detecting tumor progression in glioma: current standards and new techniques

    No full text
    Introduction: The post-treatment monitoring of glioma patients remains an area of active research and development. Conventional imaging with MRI is a highly sensitive modality for detecting and monitoring primary and secondary brain tumors and includes multi-parametric sequences to better characterize the disease. Standardized schemes for measuring response to treatment are in wide clinical use; however, the introduction of new therapeutics have introduced new patterns of response that can confound interpretation of conventional MRI and can cause uncertainty in the proper management following therapy. Areas covered: A summary of current and evolving techniques for assessing glioma response in this era of new therapies that address these challenges are presented in this review. While this review focuses more on clinical and early clinical methodologies for MRI and nuclear medicine techniques some promising pre-clinical techniques are also presented. Expert commentary: While successful single institution results have been widely reported in the literature, any new methodologies must be undertaken in multi-center settings. Additionally, the need for standardization of protocols in quantitative measured are an important area that must be addressed for new and promising techniques to be implemented to a wide array of patients

    Prediction of radiation necrosis in a rodent model using magnetic resonance imaging apparent transverse relaxation (R\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e∗\u3c/sup\u3e)

    No full text
    Background and purpose. Radiation necrosis remains an irreversible long-term side-effect following radiotherapy to the brain. The ability to predict areas that could ultimately develop into necrosis could lead to prevention and management of radiation necrosis. Materials and Methods. Fischer 344 rats were irradiated using two platforms (micro-CT irradiator and x-Rad 225 IGRT) with radiation up to 30 Gy for the micro-CT and 40 Gy for the xRAD-224 to half the brain. Animals were subsequently imaged using a 9.4 T MRI scanner every 2-4 weeks for up to 28 weeks using a 7-echo gradient echo sequence. The apparent transverse relaxation constant (R ) was calculated and retrospectively analyzed. Results. Animals irradiated with the low-dose rate micro-CT did not exhibit any symptoms or imaging changes associated with RN. Animals irradiated with the xRAD-225 exhibited imaging changes consistent with RN at week 24. Analysis of the coefficient within the lesion and hippocampus shows the potential for detection of RN up to 10 weeks prior to morphological changes. Conclusions. The ability to predict areas of RN and increases of within the hippocampus provides a method for long-term monitoring and prediction of RN. 2

    Benchmarking Automated Machine Learning-Enhanced Planning With Ethos Against Manual and Knowledge-Based Planning for Locally Advanced Lung Cancer

    No full text
    Purpose: Currently, there is insufficient guidance for standard fractionation lung planning using the Varian Ethos adaptive treatment planning system and its unique intelligent optimization engine. Here, we address this gap in knowledge by developing a methodology to automatically generate high-quality Ethos treatment plans for locally advanced lung cancer. Methods and Materials: Fifty patients previously treated with manually generated Eclipse plans for inoperable stage IIIA-IIIC non-small cell lung cancer were included in this institutional review board–approved retrospective study. Fifteen patient plans were used to iteratively optimize a planning template for the Daily Adaptive vs Non-Adaptive External Beam Radiation Therapy With Concurrent Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Trial of an Individualized Approach for Toxicity Reduction (ARTIA-Lung); the remaining 35 patients were automatically replanned without intervention. Ethos plan quality was benchmarked against clinical plans and reoptimized knowledge-based RapidPlan (RP) plans, then judged using standard dose-volume histogram metrics, adherence to clinical trial objectives, and qualitative review. Results: Given equal prescription target coverage, Ethos-generated plans showed improved primary and nodal planning target volume V95% coverage (P < .001) and reduced lung gross tumor volume V5 Gy and esophagus D0.03 cc metrics (P ≤ .003) but increased mean esophagus and brachial plexus D0.03 cc metrics (P < .001) compared with RP plans. Eighty percent, 49%, and 51% of Ethos, clinical, and RP plans, respectively, were “per protocol” or met “variation acceptable” ARTIA-Lung planning metrics. Three radiation oncologists qualitatively scored Ethos plans, and 78% of plans were clinically acceptable to all reviewing physicians, with no plans receiving scores requiring major changes. Conclusions: A standard Ethos template produced lung radiation therapy plans with similar quality to RP plans, elucidating a viable approach for automated plan generation in the Ethos adaptive workspace
    corecore